Code No: **R20A0024**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, June 2025 Probability and Statistics

(CSE, IT, CSE-CS, CSE-AIML, CSE-DS, CSE-IOT & B.Tech-AIDS)

Roll No

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

1	A	<u>SECTION-I</u> A random variable X has the following distribution						_	BCLI L2	CO(s) CO-I	Marks [7M]	
		Х	1	2	3	4	8	9				
		P(x)	k	3k	5k	7k	9k	11k	-			
		Determine(i) k (ii) mean (iii) variance (iv) $P(X) > 2$						-				

BConsider two random variables X and Y with joint PMF given in
below TableL2CO-I[7M]

	Y=1	Y=2	Y=3	Y=4
X=1	6C	3C	2C	4C
X=2	4C	2C	4C	0
X=3	2C	С	0	2C

a. Find C

b. Calculate the Marginal distributions.

OR

2 A If $f(x) = kx^2e^{-x}$ is pdf in $0 < x < \infty$ find the value of k and L2 CO-I [7M] mean of random variable.

B Let X and Y be jointly continuous random variables with joint L2 CO-I [7M] PDF

$$f_{X,Y}(x,y) = \begin{cases} x + cy^2 & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & otherwise \end{cases}$$

a. Find the constant C

b. Find
$$P(0 \le X \le \frac{1}{2}, 0 \le Y \le \frac{1}{2})$$

SECTION-II

R20

Max. Marks: 70

3	A	If X is a Poisson variate such that	L3	CO-II	[7M]
		$3p(x = 4) = \frac{1}{2}p(x = 2) + p(x = 0)$, find mean of X and			
		$P(X \leq 2).$			
	В	In normal distribution exactly 7% of the items are under 35 and	L3	CO-II	[7M]
		89% are under 63. What are mean and standard deviation of the distribution?			
		OR			
4	A	Ten coins are thrown simultaneously. Find the probability of	L3	CO-II	[7M]
		getting at least seven heads.	-		L J
	B	In a sample of 1000 cases, the mean of certain test is 14 and	L3	CO-II	[7M]
		standard deviation is 2.5. Assuming the distribution to be normal,			
		find (i) how many students score between 12 and 15(ii) how many			
		score above 18(111) how many score below 18?			
5	4	<u>SECTION-III</u> Compute the correlation coefficient between x and x from the	12	CO-III	[7M]
5	71	following data		co-m	[/174]
		x 6 2 10 4 8			
		y 9 11 5 8 7			
	B	Obtain the lines of regression from the following data	L2	CO-III	[7M]
		x 1 2 3 4 5 6 7			
		y 9 8 10 12 11 13 14			
6	4	UR The following zero order correlation coefficients are given:	1 2	СОШ	[7]]
0	A	$r_{10} = 0.6$ $r_{10} = 0.4$ & $r_{20} = 0.35$		CO-III	[/[VI]
		Calculate multiple correlation coefficient treating first variable as			
		dependent and second & third variables as independent.			
	B	For the given lines of regression $3x-3y=5$ and $x-4y=7$. Find	L2	CO-III	[7M]
		(a) Regression coefficients			
		(b) Coefficient of correlation.			
		SECTION-IV			
7	A	A population consists of five numbers 2.3.6.8.11. Consider all	L2	CO-IV	[7M]
		possible samples of size two which can be drawn without			[]
		replacement from the population. Find			
		(a) the mean of the population			
		(b) the standard deviation of population			
	R	(c) mean of the sampling distribution of means.	13	COIV	[7]
	D	coin unbiased?	LJ	0-11	[/191]
		OR			
8	A	If 80 patients are treated with an antibiotic 59 got cured. Find a	L3	CO-IV	[7M]
		99% confidence limit to the true proportion curve.			
	В	If two independent random samples of size $n_1 = 13$ and $n_2 = 7$	L3	CO-IV	[7M]
		are taken from a normal population, what is the probability that the			
		that of the second sample?			
		SECTION-V			
9	A	An auditor claims that he takes on an average 10.5 days to file	L3	CO-V	[7M]

income tax returns (I.T. returns). Can this claim be accepted if a random sample shows that he took 13, 19, 15, 10, 12, 11, 14, 18 days to file I.T returns?

B Two independent sample of 8 and 7 items respectively had the L3 CO-V [7M] following values.

Sample-I	11	11	13	11	15	9	12	14
Sample-II	9	11	10	13	9	8	10	-
- 1 11.00				0				

Is the difference between the means of samples significant? OR

10 *A* The measurements of the output of two units have given the following results. Assuming that the both samples have been obtained from the normal population at 5% significant level, test whether two populations have the same variance.

Unit-A	14.1	10.1	14.7	13.7	14.0
Unit-B	14.0	14.5	13.7	12.7	14.1

B From the following data find whether there is any significant linking in the habit of taking soft drinks among the categories of employees.

Soft Drinks	Clerks	Teaches	Officers	Total
Pepsi	10	25	65	100
Thumps Up	15	30	65	110
Fanta	50	60	30	140
Total	75	115	160	350

L3 CO-V [7M]

CO-V

[7M]

L3